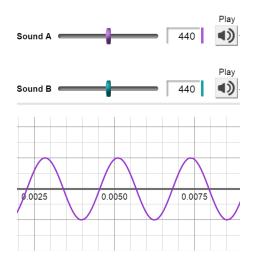
Name:

Date: ____

Student Exploration: Sound Beats and Sine Waves

Vocabulary: amplitude, beat, constructive interference, crest, destructive interference, frequency, hertz, sound wave, trough

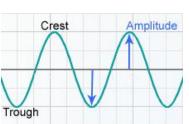
Prior Knowledge Questions (Do these BEFORE using the Gizmo.)


- 1. The picture at left shows water ripples interacting. What do you notice about the area indicated by the arrow?
- 2. Why do you think there are no distinct ripples in the area indicated by the arrow?

Gizmo Warm-up

Just like ripples on the surface of water, **sound waves** can interact with and influence each other. You can use the *Sound Beats and Sine Waves* Gizmo to explore two different types of sound wave interactions.

If you have headphones available, put them on now. Under **Visual**, turn on **Sound A**. Click the **PLAY** icon () next to the **Sound A** slider. Listen closely to the sound. Now, click **PLAY** next to the **Sound B** slider.


1. How do the two sounds compare? _____

2. Click the **PLAY** icon under the word **Auditory** to play Sound A and Sound B together. How does this sound differ from Sound A and Sound B when they are played alone?

Activity A:	Get the Gizmo ready:	\wedge	\wedge	
Constructive interference	 Make sure the Frequency for both Sound A and Sound B is set to 440 Hz. Check that the Visual for Sound A is on. 	9.0025	0.0050	0.007

Introduction: The sine wave shown in the Gizmo represents a sound wave. **Crests**, or high points, correspond to places where air molecules are pushed together in a sound wave. **Troughs**, or low points, correspond to places where air molecules are spread apart in a sound wave. The **amplitude** of the wave is the distance between a crest or trough and the rest position on the horizontal axis.

Question: How do two waves with the same frequency interact?

1. <u>Compare</u>: A wave's **frequency** is the number of waves that pass a point in a given time. Frequency is measured in **hertz** (Hz), or waves per second. Sounds A and B currently have the same frequency. How do you think Sound B's sine wave will compare to Sound A's?

Turn on the Visual for Sound B to check your answer.

- Observe: Turn on the Visual for Sound A + B. What happens when these two sound waves combine?
- 3. <u>Make a rule</u>: In the Warm-up, you discovered that when Sound A and Sound B are played together, the volume of the combined sound increases. Make a rule that explains the relationship between a sound wave's amplitude and its volume:
- 4. <u>Draw conclusions</u>: Turn on the **Time marker**. Position the marker over a wave crest. The amplitude of each wave is given on the bottom left side of the Gizmo screen.
 - A. What is the amplitude of **Sound A**? _____ **Sound B**? _____
 - B. What is the amplitude of Sound A + B? _____
 - C. Complete the sentence: The amplitude of **Sound A + B** is equal to the sum of _____

When the crests and troughs of one wave overlap the crests and troughs of another wave, **constructive interference** occurs. The result of constructive interference is a new wave with higher crests and deeper troughs. Thus, the new wave has a greater amplitude than the original waves.

Activity B:	Get the Gizmo ready:	
Destructive interference	 Turn off the Visual for Sound A + B. Set the Frequency of Sound A to 441 Hz. Check that Sound B is set to 440 Hz. 	3.5650

Question: How do sound waves interact when their frequencies are different?

- 1. <u>Compare</u>: Play **Sound A**. Next, play **Sound B**. Can you hear any difference in the two sounds? If so, describe how the two sounds are different.
- 2. <u>Observe</u>: Turn on the **Visua**l for both **Sound A** and **Sound B**. Move the **Time** slider at the bottom of the Gizmo screen back and forth. Describe what you see.
- <u>Collect data</u>: Move the **Time** slider all the way to the left. For each of the times listed in the table below, use the **Time marker** to record the amplitudes of **Sound A** and **Sound B**. Then, find the sum of the two amplitudes and record this number in the last column. (Note: Pay attention to negative signs.)

Time (t)	Sound A amplitude	Sound B amplitude	Sound A + B amplitude
0.0006			
0.3000			
0.4995			

4. <u>Predict</u>: Study the data you collected. What do you think Sound A and Sound B will sound

like when they are played together?

5. <u>Observe</u>: Click **PLAY** to listen to the combined sounds. Describe what you hear: _____

(Activity B continued on next page)

Activity B (continued from previous page)

6.	<u>Explair</u>	n: Why did the volume of the sour	nd change over time?		
7 .	the vol		fferent frequencies combine, you hear variations in om soft to loud is called a beat . Click PLAY to lister		
	How m	nany beats did you hear?			
3.	the bea	at is the result of destructive inte	result of constructive interference. The soft part of erference , which occurs when the crest of one wave n destructive interference occurs, the resulting wave al waves.		
			ove the time slider all the way to the left. For each o constructive or destructive interference is occurring:		
	0.0050):	0.5100:		
	0.7550):	2.0175:		
3.	Make o	connections: Click the zoom out c	control (🖃) on the graph three times.		
	A.	What do you see?			
	B. How do you think this relates to the number of beats you counted?				
	C.	PLAY the combined sounds. Ho	w does the sound relate to the graph's green wave?		

Activity C:	Get the Gizmo ready:	
Activity C: Frequencies and beats	 Make sure the Visual for Sound A + B is on. Make sure the Frequency of Sound A is 441 Hz, and the Frequency of Sound B is 440 Hz. 	

Question: How do the number of beats relate to the frequencies of the two sound waves?

- 1. Predict: Do you think you will hear more beats or fewer beats if you increase the frequency difference between sounds A and B? Explain your answer.
- 2. <u>Collect data</u>: In the table below, subtract the frequency of Sound B from that of Sound A. Write this number in the third column.

Turn off the **Visual** for **Sound A** and **Sound B**. For each set of frequencies, record the number of beats in 4 seconds. To do this, you can count the beats you hear and then check this value by counting the number of pinched-in areas of the green wave pattern on the graph.

Sound A frequency (Hz)	Sound B frequency (Hz)	Frequency difference (Hz)	N ^{°.} of beats in 4 seconds	N ^{°.} of beats in 1 second
441	440			
442	440			
443	440			
443	439			
443	438			
443	437			

- 3. <u>Calculate</u>: Divide the number of beats in 4 seconds by 4 in order to find the number of beats per second. Use this figure to fill in the last column of the table.
- 4. <u>Analyze</u>: What relationship do you see between the frequency difference and number of

beats in 1 second?

5. <u>Apply</u>: Suppose a sound wave with a frequency of 444 Hz combined with a sound wave with a frequency of 436 Hz. How many beats would you hear in one second?